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C O N D I T I O N S  OF B U B B L E  F O R M A T I O N  IN T H E  I N T E R G R A N U L A R  

L A Y E R  OF A GLASS P H A S E  IN C E R A M I C S  S I N T E R I N G  

D. N.  Karpinskii  and G. I. Panchikhina UDC 536.421.5:539.4 

Calculation results for the evolution of the gas-concentration distribution in the intergranular 
layer of a glass phase cooling from the sintering temperature to room temperature are 
presented. The calculations are performed for two stages of cooling of the glass phase. The 
calculation results suggest that gas dissolution in the intergranular layer of the glass phase 
leads to substantial softening of the conditions of bubble formation in it, and the second (low- 
temperature) stage of cooling makes a major contribution to the saturation of the glass phase 
with the gas. 

1. The microstructure of ceramic specimens is an ensemble of randomly oriented crystal grains, pores, 
and a thin film of a glass phase between them, which is subjected to cracking in places [1, 2]. This ceramic 
microstructure is formed during preparation of specimens at high temperatures, and it is almost unchasxged 
at room temperature because ceramic specimens practically do not undergo plastic deformation while in 
service. Thus, the problem of optimizing the microstructure of ceramics at the stage of manufacture (sintering) 
becomes especially pressing. This problem can be solved by numerical simulation, which allows one to study 
the influence of numerous factors on the strength properties of ceramics [3-6] in detail. In the present paper, 
of the variety of phenomena related to sintering of ceramics, we consider only the problem of formation 
of discontinuities (bubbles) in the liquid phase filling the space between ceramic-powder grains at high 
temperature. 

In the sintering of ceramics, a liquid phase can appear at the melting point of the low-melting component 
or as a result of contact melting [7]. It can also be formed by addition of glass-forming components into the 
mixture prior to sintering [8]. Lange [9] was the first to study the role of the liquid phase as an adhesive 
film at the boundary between ceramic grains. Under the action of negative pressure p (i.e., tension), the 
liquid is metastable. Gas bubbles form in it and grow until failure of the liquid [10-12]. Lange [9] estimated 
the condition of athermic origin of bubbles and obtained a value of pc - 60 MPa for the minimum tensile 
stress. Marion et al. [13] and Rodin [14] studied the factors responsible for the origin of tensile stresses in the 
intergranular layer. Slavyanskii [15, 16] examined the influence of the gas dissolved in glass on the conditions 
of gas-bubble formation in it. 

We study the origin of bubbles in a gas-saturated viscous liquid. Under these conditions, the critical 
tension of the liquid p in which a gas bubble of radius re forms and the maximum free energy Fmax of the 
liquid with the gas bubble are defined by 

p = 271~re - p', Fmax = 16~rT~/3(p + pt)2, (1.1) 

where 7z is the specific surface energy of the glass phase, p~ = kBTN In[c/Cos] [17], N is the number of possible 
positions of gas atoms in a unit volume of the glass phase, T is the temperature, kB is the Boltzmann constant, 
COs is the equilibrium concentration of the dissolved gas, defined by Henry's law [18], and cos = Fp0 (F is 
Henry's constant and p0 is the gas pressure in the ambient medium). At T = 1470 K, N = 1029 m -s,  and 
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c/co~ = 1.01, pt is estimated as p' = 20 MPa. Then, from (1.1) it follows that the external tensile stress p 
decreases considerably when a critical bubble originates. For the indicated estimates, of importance is the 
mechanism whereby the glass-phase layer is saturated with the gas during sintering to a magnitude at which 
the value of p' has a marked influence on the conditions of bubble formation. In this connection, it is reasonable 
to study the influence of gas dissolution in the glass phase on bubble formation. 

2. We study the evolution of the concentration distribution of the gas dissolved c in the glass-phase 
layer that separates a pair of ceramic grains under tensile loading across the intergranular boundary (Fig. 1). 
The calculations are based on the following model: 

1) The pair of grains cools from high temperature to room temperature as a result of heat removal 
lateral faces of the grains and the glass-phase layer; 
The divergence 6(t) of the pair of grains proceeds perpendicular to the layer; 
The layer thickness 6 varies as a result of leak-in of the viscous liquid at high temperature (T > 

4) The evolution of the concentration of the gas dissolved in the glass phase c is caused by sorption 
processes on the surface of menisci of the glass phase and diffusion of the dissolved gas into the layer; 

5) At T < 1000 K (up to room temperature), the glass phase is regarded as a viscoelastic layer between 
immovable grains and the gas diffusion in it is due to internal stresses developing because of the difference in 
the thermal-expansion coefficients between the solidified and liquid phases. 

We first consider the gas dissolution in the glass-phase layer of the specimen at high temperatures 
T > 1000 K, at which the glass phase can be considered a viscous liquid. The equilibrium pressure distribution 
p(z) in the glass phase along the boundary between the pair of grains is defined by [13] 

p(x) = 6~(T)8/63[d 2 - z 2 + l(x - d)] + 71/6, (2.1) 

where d is the distance from the coordinate origin to the meniscus surface. The viscosity ~?(T) of the glass 
phase is calculated (in pascal-seconds) by the Tamman-Fulcher formula [19, 20] 

B 
log(T/(T)) = A + T ----~g" (2.2) 

In (2.1), (2.2), A = -2.78,  B = 5574 K, Tg = 500 K, 8(t) is the thickness of the glass-phase layer, 8 is the 
rate of change of 8, and l is the grain size. 

We calculate the gas diffusion in this layer taking into account the pressure distribution in it p(x). The 
equation for the thermomechanical diffusion of the gas (the Konobeevskii-Gorskii effect) [21] along the layer 
has the form 

O c _  O (  Dc 0#~, (2.3) 
Ot Ox kBT Ox / 

where the chemical potential of a weak solution of the gas g = kBT(x,t)ln(c/Cos) - tip(x, t) (fl = N - l ) ,  
D(T) = DoTexp [ -ED/(RT)]  is the diffusivity of the gas in the viscous liquid (Do is a constant), ED is the 
activation energy of diffusion, and R is the gas constant. The form of D(T) is chosen according to [22] for the 
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B203 glass melt. The initial condition for (2.3) is c(x, 0) = cos, and the boundary conditions have the form 
[18] 

-DOC =h(c 2-cos)  for x = d ,  x = l - d ,  (2.4) 
Oz 

where h is the constant of mass exchange for the gas on the surfaces of menisci. The temperature distribution 
T(x, t) along the glass-phase layer is determined from the heat-conduction equation 

OT 02T 
ot - ( 2 . 5 )  

where a is the thermal diffusivity of the glass. The initial condition for (2.5) is T(x, t) = Tmax, and the 
boundary conditions at x = d and x = l - d are given by 

h oT 
- ~ u  = ~ ( T  - To) ,  (2 .6 )  

where A is the thermal conductivity of the glass phase, a is the constant of heat exchange of the layer with the 
ambient medium, and To is the ambient temperature. Reducing (2.3)-(2.6) to dimensionless form, we obtain 
the system 

Oc' 02c' A1 '2 kBT , Oc' ] A0~-~7 = (1 - 2z )~xTx, - 2c' 

with the boundary and initial conditions 

Od 
Oz' = A4(c ' -  1), 

at x' = 0.1, d(x' ,O) = 1, and ,T(x',O) = Tmax. 

A OT O2T 
2~-~ = Aa Ox,2, (2.7) 

OT 
0x' = As(T - To) 

In (2.7), we have c'(x', t') = c(x', t')/cos, x' = (x -d) l ( l -2d) ,  t' = DoTot/(l-2do) 2, A2 = (60/6) 2, A0 = 
(6o/6)2(To/T)exp [ED/(RT)], A 1  --~ 6~2rl(T)(6/63)DoTo(6o/6) 2, A3 = a/(DoT), A4 = - h ( l -  2do)6o/(Do6), 
and A5 = -a(l-2d0)~i0/(A6).  In the derivation of (2.7), it was assumed that the glass phase is incompressible. 
Then, the quantities d(t) and di(t) are related by 6(l - 2d) = 60(l - 2d0), where 60 and do are the initial values 
of these quantities. System (2.7) was solved numerically, and the nonlinear boundary conditions (2.4), which 
correspond to dissolution of diatomic gases, were linearized according to [18]. 

The calculations for B 2 0 3  glass melt were performed for the following values of the constants: a = 
3 . 1 0  -7 m2/sec, A = 0.84 W / ( m  �9 K) [22]; a = 600 W / ( m  2 �9 K ) , R  = 8.3 J / ( m o l e .  K), To = 300 K, 
Tm~x = t500 K, f~ = 10 -29 m 3, Do = 9.3-10 TM m2/(sec �9 K), ED = 20 kJ/mole [22], l = 10 -6 m, 50 = 10 -s  m, 
and do = 0. The divergence of the pair of grains is given by (5(t) = 6t + 50, where 6/6 = 10 -5 sec -1 or, in 
dimensionless form, 5 = [ ( / -  2do)2/(DoTo)]6t ' + 6o. 

3. We now study the gas dissolution in the glass phase at T < 1000 K, at which the glass phase has the 
properties of a viscoelastic body. In this case, problem (2.3)-(2.6) is solved with allowance for the dilatation 
stress field p(x, t), which arises when a layer of the glass-forming melt of thickness 6 cools from the initial 
temperature T(x, O) = 1000 K to room temperature. According to [19], we regard the thermomechanical state 
of the cooling glass melt as a simple thermorheological material; its behavior is described using the notions of 
thermoviscoelasticity theory - -  the reduced time ~(x, t) and fictitious temperature Tf(x, t). These quantities 
are given by the formulas [19] 

t t 

Ti(x , t  ) = T(x,t)-/exp[r162176 dT(x,t'), ~(x,t)= fo [[r/(x't')jrl~el ] dt', (3.1) 

were 7/and ~?rel are the real viscosity of the glass-phase layer and reference viscosity [19, 20, 23]. The initial 
time is the moment  the layer reaches the temperature T = 1000 K. The thermal strain of the layer at time t 
is given by 

st(x, t) = #g[T(x, t) - 1000] + #s[Tf(z, t) - 1000], 
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where fig and Bs axe the thermal-expansion coefficients in the glass and liquid states. Similarly to [23], the 
relaxation function has the form 

t, t') = exp [(C(x, t) - r ~ (3.2) 

(ra = 1 at T t> Tg and ra = c~ at T < Tg). The  temperature stresses in the cooling viscoelastic layer with 
free boundaries satisfy the conditions 

l-d 
az = O, a~ = a N = p(x ,  t), f p(x,  t) dx = 0, (3.3) 

d 

where 

, O~,(z,*') 
= j (RIO(t)  - )1 dr', 

0 

[e(t) is the instantaneous strain of the layer]. 

,7.(a:, *) = E / (1  - v)[e(t) - e,(z,  ~)], 

The  values of p ( x , t )  .are calculated by the procedure of [23] using formulas (3.1)-(3.3) for 
/3g = 1.44 �9 10 -5 K -1,  /3s = 21 �9 10 -5 K -1, E = 7 �9 104 MPa, v = 0.3 for B203 glass melt.  Substituting 
the internal stresses p(x,  t) into (2.3), we obtain the evolution of the concentration distribution of the gas 
dissolved in the viscoelastic layer of the glass phase. In the calculation, we take into account the stress 
and concentration of the dissolved gas that  have been previously accumulated in the intergranular layer (at 
T > 1000 K). 

The  results of the calculations of the formation of internal thermal stresses in the cooling viscoelastic 
glass phase show that  in the initial stage of cooling, the stresses distributed on a parabola grow, but further 
cooling leads to ~'overturning" of the parabola (the sign of stresses in the outer and middle regions of the 
layers is reversed). In the viscoelastic layer, in contrast to the thermoelastic layer, complete  cooling gives 
rise to residual stresses: the outer regions of the layer are compressed and the inner regions are extended. 
Therefore, one should expect penetration of the dissolved gas into the depth of the cooling viscoelastic layer. 
In this case, the action of mechanical stresses can be imagined as a "pump" that  distributes the gas over the 
entire depth  of the glass-phase layer. 

4. We now discuss the results of the calculations performed. Over the period of cooling of the 
intergranulax layer, the gas is redistributed along the intergranulax layer of the glass phase. In the first 
stage of cooling from 1500 to 1000 K, the dissolved-gas concentration is accumulated nonuniformly along the 
layer. For the chosen values of the parameters,  the maximum value of C'~x reaches 1.007. Further cooling 
of the glass-phase layer gives rise to internal thermal  stress graxiients that  compensate  the decrease in the 
diffusivity D ( T )  and are responsible for an increase in camax to 1.035 (Fig. 2). The calculation results obtained 
can be used to determine the concentration of critical nuclei of gas bubbles in the glass phase as a function 
of t ime t: 
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c*(x, t) = N exp [-Fmax/(kBT)] 

[/'max is given in (1.1)]. The evolution of c* in the intervals 10 -4 ~ t' <~ 10 -3 and 10 -3 <~ t' <~ 10 -2 is shown 
in Fig. 3a and Fig. 3b, respectively. These calculation results indicate that the height of the energy activation 
barrier for bubble formation /'max decreases extremely rapidly with time as the dissolved-gas concentration 
increases. In the calculation, the normal atmospheric ambient gas pressure p0 = 0.1 MPa was assumed. 
Strictly speaking, in the calculations the dependence of Henry's constant (F) and the diffusivity (D) on the 
stress state of the intergranular layer of the glass phase was ignored. However, insufficient experimental data 
for the chosen glass melt over a wide temperature range [22] does not permit this dependence to be taken 
into account. The data available in [22] on the effect of mechanical stresses on the gas saturation of glass 
melts indicate that  D increases markedly in a tensile stress field and decreases under compressing stresses. 
In the calculations performed, we ignored the dependences of 7z on the temperature and concentration of the 
dissolved gas. 

The main conclusions of this work are as follows: 
1. Gas dissolution in the intergranulaz layer of the glass phase facilitates bubble formation in it. 
2. The second (low-temperature) stage makes a major contribution to the saturation of the glass phase 

with the gas. 
This work was supported by a grant from the Competitive Center on Fundamental Natural Sciences 

of St. Petersburg University. 
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